ARTICLES FOR PRESENTATION

Having attached more articles than any provider should be expected to read in preparation for this presentation, I recommend that you tuck them away as digital resources for future reference if you so desire.
"NORMAL" CONDITIONS

Disclaimer: This presentation is not intended to apply to 100% of patients, as there are a small percentage of patients with pituitary issues, thyroid cancers, autonomous thyroid nodules, hormone-secreting tumors and/or similar conditions where diagnosis and treatment decisions are different.

The following discussion is primarily targeted at the other 99+%.
PEARLS

1. Thyroid Testing
2. Euthyroid Sick
3. “Normal” TSH Levels
 • Subclinical Hypo- & Hyperthyroidism
4. Thyroid Dosing
5. Treatment of iatrogenic Hyperthyroidism
6. Treatment of Hyperthyroidism
7. Use of Non-Synthetic Thyroid Supplements
Regulation of thyroid hormone production

- **Hypothalamus**
 - TRH stimulates the anterior pituitary gland

- **Anterior pituitary gland**
 - Secretes TSH (Thyroid-stimulating hormone)

- **Thyroid gland**
 - Produces T4 and T3 (Thyroxine and Triiodothyronine)

- **Liver**
 - Converts T4 to T3
 - Converts T4 and T3 to Conjugated T4 and T3

- **Intestine**
 - Absorbs T4 and T3 from the bloodstream

- **Circulatory system**
 - Transport T4 and T3 to other organs

- **Stimulatory pathway**
 - +

- **Inhibitory pathway**
 - –

- **Conjugated T4 and T3**
 - OGT
• Most of the hormone secreted from the thyroid is T4
• T4 is converted to T3 (Reverse or Active)
 • Active T3 (aT3) is far more potent than T4; formed by removal of an iodine in the outer ring of T4
 • Reverse T3 (rT3) is formed by removal of an iodine in the inner ring of T4 and is a biologically inactive metabolite of T4
 • Both are controlled by a highly regulated system involving 3 iodothyronine deiodinases (D1, D2 & D3), which selectively remove iodine atoms
• rT3 is associated with conditions characterized by a reduction in metabolic rate, including starvation; chronic HF – particularly when associated with AF; and non-thyroidal illness syndrome (aka, “euthyroid sick syndrome”). Also seen in critical illness, very elderly patients, chronic stress, myocardial infarction, and chronic inflammatory states
EUTHYROID SICK

• TSH is falsely **elevated** and frequently **misinterpreted** as hypothyroidism

• Nonthyroidal Illness leads to changes in...
 • Thyroid Hormones
 • Binding Proteins
 • TSH Concentrations

• Typical changes with nonthyroidal illness:
 • **LOW** concentrations of all 3 binding proteins
 • High concentration of FFAs that displace thyroid hormones from binding proteins
 • Acquired Central Hypothyroidism
 • Use of medications that affect thyroid function

PEARL: Unless thyroid disease is suspected as a contributor to the hospitalization, **wait** until the patient is at or close to baseline before checking TSH, making a diagnosis or changing thyroid supplement doses
ASSESSING THYROID FUNCTION

• Log Linear relationship between Free T4 & TSH
 • Small changes to Free T4 → Large changes in TSH

• From UpToDate: “thyroid function is best assessed by measuring serum TSH, assuming steady-state conditions and the absence of pituitary or hypothalamic disease”

• 3rd Generation TSH Assays are accurate to 0.01 and are more sensitive, specific, accurate and precise than any combination of T4, T3, Free T4, Free T3, TBI, T3RU… etc.

• Biotin interferes thyroid assays, often leading to falsely low TSH and elevated T4 and T3. Need to stop it >48 hours before testing
COMMON DRUG EFFECTS ON THE THYROID

Biotin interferes thyroid assays, often leading to falsely low TSH and elevated T4 / T3. **Stop it >48 hours before testing**

Amiodarone messes with everything thyroid.
- Destructive thyroiditis in 5-10% [↑T4/T3; ↓TSH]
- Its 37% iodine by weight provides 45X the recommended dialy intake of iodine, leading to hyperthyroidism in some and hypothyroidism in many other patients

Lithium causes goiter any hypothyroidism by decreasing thyroid hormone release (appx. 18% of treated patients)

COMMON DRUG EFFECTS ON THE THYROID

Methadone increases TBG, leading to hypothyroidism

Glucocorticoids:
- Inhibit conversion of T4 → T3
- Suppress Thyrotropin release (Minor clinical impact)
- Decrease TBG (minor increase in TSH)

Thyroid supplements require an acidic milieu for dissolution & absorption. **PPI** use leads to an increase in TSH

Fe{sup+2}, **Ca**{sup+2}, Sucralfate & Cholestyramine interfere with absorption

Use only the TSH!!!

Serum Free T4 measurements are very insensitive for assessing appropriate dose

MONITORING SECONDARY HYPOTHYROIDISM

• Use the Serum **Free T4** for pituitary or hypothalamic disease
 (eg, absent or impaired TSH release)

• Maintain Free–T4 in the upper 50% of normal
MONITORING THYROID CANCER

• Thyroid replacement is given to suppress TSH secretion to prevent recurrence of thyroid cancer or regrowth of goitrous tissue
• Should have a subnormal TSH => the 3rd generation TSH target is typically 0.05 – 0.1
• If TSH is <0.05, measure Free-T4 to guide dosage adjustment (decrease)
“NORMAL” TSH LEVELS IN SENIORS

• ‘Normal’ lab TSH Levels are based on healthy 18-40 yo males

• For patients >70, the updated Ideal Target TSH is 4-6

²Thyroid. 2014; Dec; 24[12]:1670-75
SUBCLINICAL HYPERTHYROIDISM

• Suppressed TSH with Normal T3 / T4 levels
 • Roughly TSH <1 in adults and <2 in seniors
 • 3-fold risk of AF in seniors
• Usually iatrogenic, though may be due to thyroid disease or hormone-secreting tumors
• Excess suppression of serum TSH primarily increases risk of:
 • Atrial Fibrillation
 • Anxiety
 • Osteoporosis
 • Accelerated Cognitive Decline
 • Increased Mortality

32016 ATA Guidelines for Treatment of Hyperthyroidism
• TSH is elevated with a normal Free T4
• Associated with higher CV mortality in patients <65, but no increased CV mortality in older persons
• Consensus recommendations of American Thyroid Association & American Association of Clinical Endocrinologists is to treat subclinical hypothyroidism with a TSH >10
• In those with a TSH 6-10, there appears to be no improvement in morbidity / mortality with treatment, but requires clinical judgment to decide on whether to treat or monitor
 • If there are symptoms, treatment is reasonable, though F/U shows that 1/3 have a normal TSH 1 year later without Rx changes... so it is often prudent to simply follow them and recheck in 6-12 months

4 J Clin Endocrinol Metab. 2008 Aug;93[8]:2998-3007
THYROID DOSING

• Half-life in adults is 6-7 days, but increases with age
 • Therapeutic life is about 8-11 days

• **Half-life in seniors 9-11 days**, therapeutic life 12-16 days

• Absorption easily altered if taken w/ food, drinks or oral meds

• Give entire week’s dose all at once [*Thyroid Thursdays*]

• Can safely be given weekly [10 AM? 2 PM?]
 • Decreased nursing time
 • Improved absorption
 • Avoids waking patients early every day
 • Decreased pill burden
 • Improved compliance?
IATROGENIC HYPERTHYROIDISM

- **TSH 0.2 – 0.4 and asymptomatic**
 - Can usually be treated by simply holding for 1-2 weeks followed by decreasing the dose; recheck 4-6 weeks after dose is reduced

- **TSH 0.1 – 0.2 and Asymptomatic**
 - NO Anxiety, tachycardia, palpitations, tremors, heat intolerance, SOB
 - Start a Beta Blocker, Hold dose for 2-4 weeks followed by reassessing dose; recheck 4-6 weeks after dose is reduced

- **TSH <0.1 OR <0.4 and Symptomatic**
 - Stop Thyroid Supplement
 - Start a Beta Blocker, Thionamide (Methimazole) and perhaps Prednisone for 2-3 weeks
 - Consider an Endocrine Consult if TSH remains <0.4 after 1 month off supplements and with the Methimazole +/- Prednisone added
NON-IATROGENIC HYPERTHYROIDISM

• Amiodarone?
• Graves?
• Nodular Goiter?
• Endocrine tumor?
• Hold the Biotin!

TREATMENT: Beta Blocker plus…
• Surgery
• Radioactive Iodine
• Pharmacologic: Methimazole +/- Steroids
USE OF NON-SYNTHETIC THYROID SUPPLEMENTS

(eg, Armour thyroid)

Don’t use them.
PEARL #1: Check the TSH only
PEARL #2: DO NOT check or trust Thyroid labs drawn during a hospitalization (for NonThyroidal Illness)
PEARL #3: An ideal TSH in seniors is 4-6
PEARL #4: A TSH <2 in seniors may represent Subclinical Hyperthyroidism associated w/ increased clinical risks
PEARL #5: Use Clinical Symptoms in Seniors to decide whether or not to change dosing in patients with a TSH 6 – 10

(Does not improve M / M)
PEARL #6: **Thyroid Thursdays**…

consider weekly dosing
PEARL #7: Hyperthyroidism treatment
always starts with a Beta Blocker and
usually includes Methimazole
BONUS PEARL: Use **ONLY** synthetic supplements